Abstract
Motion capture data are widely used in different research fields such as medical, entertainment, and industry. However, most motion researches using motion capture data are carried out in the time-domain. To understand human motion complexities, it is necessary to analyze motion data in the frequency-domain. In this paper, to analyze human motions, we present a framework to transform motions into the instantaneous frequency-domain using the Hilbert-Huang transform (HHT). The empirical mode decomposition (EMD) that is a part of HHT decomposes nonstationary and nonlinear signals captured from the real-world experiments into pseudo monochromatic signals, so-called intrinsic mode function (IMF). Our research reveals that the multivariate EMD can decompose complicated human motions into a finite number of nonlinear modes (IMFs) corresponding to distinct motion primitives. Analyzing these decomposed motions in Hilbert spectrum, motion characteristics can be extracted and visualized in instantaneous frequency-domain. For example, we apply our framework to (1) a jump motion, (2) a foot-injured gait, and (3) a golf swing motion.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献