Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review

Author:

Yang Zihan,Ren Jie,Du Mengyun,Zhao Yanru,Yu Keqiang

Abstract

Heavy metal pollution in agriculture is a significant problem that endangers human health. Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for material and elemental analysis, especially heavy metals, based on atomic emission spectroscopy. The LIBS technique has been widely used for rapid detection of heavy metals with its advantages of convenient operation, simultaneous detection of multi-elements, wide range of elements, and no requirement for the state and quantity of samples. However, the development of LIBS is limited by its detection sensitivity and limit of detection (LOD). Therefore, in order to improve the detection sensitivity and LOD of LIBS, it is necessary to enhance the LIBS signal to achieve the purpose of detecting heavy metal elements in agriculture. This review mainly introduces the basic instruments and principles of LIBS and summarizes the methods of enhanced LIBS signal detection of heavy metal elements in agriculture over the past 10 years. The three main approaches to enhancing LIBS are sample pretreatment, adding laser pulses, and using auxiliary devices. An enhanced LIBS signal may improve the LOD of heavy metal elements in agriculture and the sensitivity and stability of the LIBS technique. The enhanced LIBS technique will have a broader prospect in agricultural heavy metal monitoring and can provide technical support for developing heavy metal detection instruments.

Funder

Natural Science Foundation of Shaanxi Province of China

National Natural Science Foundation of China

Shaanxi Province Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3