Fuzzy-Based Privacy-Preserving Scheme of Low Consumption and High Effectiveness for IoTs: A Repeated Game Model

Author:

Cao LaichengORCID,Zhu MinORCID

Abstract

In the Internet of things (IoTs), data transmission via network coding is highly vulnerable to intra-generation and inter-generation pollution attacks. To mitigate such attacks, some resource-intensive privacy-preserving schemes have been adopted in the previous literature. In order to balance resource consumption and data-privacy-preserving issues, a novel fuzzy-based privacy-preserving scheme is proposed. Our scheme is constructed on a T-S fuzzy trust theory, and network coding data streams are routed in optimal clusters formulated by a designed repeated game model to defend against pollution attacks. In particular, the security of our scheme relies on the hardness of the discrete logarithm. Then, we prove that the designed repeated game model has a subgame-perfect Nash equilibrium, and the model can improve resource utilization efficiency under the condition of data security. Simulation results show that the running time of the proposed privacy-preserving scheme is less than 1 s and the remaining energy is higher than 4 J when the length of packets is greater than 400 and the number of iterations is 100. Therefore, our scheme has higher time and energy efficiency than those of previous studies. In addition, the effective trust cluster formulation scheme (ETCFS) can formulate an optimal cluster more quickly under a kind of camouflage attack.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3