Numerical Simulation of the Photobleaching Process in Laser-Induced Fluorescence Photobleaching Anemometer

Author:

Chen Yu,Meng Shuangshuang,Wang Kaige,Bai Jintao,Zhao WeiORCID

Abstract

At present, a novel flow diagnostic technique for micro/nanofluidics velocity measurement—laser-induced fluorescence photobleaching anemometer (LIFPA)—has been developed and successfully applied in broad areas, e.g., electrokinetic turbulence in micromixers and AC electroosmotic flow. Nevertheless, in previous investigations, to qualitatively reveal the dynamics of the photobleaching process of LIFPA, an approximation of uniform laser distribution was applied. This is different from the actual condition where the laser power density distribution is normally Gaussian. In this investigation, we numerically studied the photobleaching process of fluorescent dye in the laser focus region, according to the convection–diffusion reaction equation. The profiles of effective dye concentration and fluorescence were elucidated. The relationship between the commonly used photobleaching time constant obtained by experiments and the photochemical reaction coefficient is revealed. With the established model, we further discuss the effective spatial resolution of LIFPA and study the influence of the detection region of fluorescence on the performance of the LIFPA system. It is found that at sufficiently high excitation laser power density, LIFPA can even achieve a super-resolution that breaks the limit of optical diffraction. We hope the current investigation can reveal the photobleaching process of fluorescent dye under high laser power density illumination, to enhance our understanding of fluorescent dynamics and photochemistry and develop more powerful photobleaching-related flow diagnostic techniques.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3