Fabrication of High-Sensitivity Optical Fiber Sensor by an Improved Arc-Discharge Heating System

Author:

Ma Chao1,Wang Jian2,Yuan Libo2ORCID

Affiliation:

1. Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China

2. Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

We proposed a high-sensitivity optical fiber sensor based on a dual-resonance helical long-period fiber grating (HLPG). The grating is fabricated in a single-mode fiber (SMF) by using an improved arc-discharge heating system. The transmission spectra and the dual-resonance characteristics of the SMF-HLPG near the dispersion turning point (DTP) were studied through simulation. In the experiment, a four-electrode arc-discharge heating system was developed. The system can keep the surface temperature of optical fiber relatively constant during the grating preparation process, which shows an advantage in preparing high-quality triple- and single-helix HLPGs. In particular, benefiting from this manufacturing system, the SMF-HLPG operating near the DTP was successfully prepared directly by arc-discharge technology, without secondary processing of the grating. As a typical application example of the proposed SMF-HLPG, physical parameters such as temperature, torsion, curvature and strain can be measured with high sensitivity by monitoring the variation of the wavelength separation in the transmission spectrum. Therefore, the proposed sensor and its fabrication technology have potential application prospects in practical sensing measurement.

Funder

National Natural Science Foundation of China

Bagui scholars Program of Guangxi Zhuang Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3