The Comparison of the Multi-Layer Artificial Neural Network Training Methods in Terms of the Predictive Quality of the Coefficient of Friction of 1.0338 (DC04) Steel Sheet

Author:

Trzepieciński Tomasz1ORCID

Affiliation:

1. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 8, 35-959 Rzeszow, Poland

Abstract

Friction is one of the main phenomena accompanying sheet metal forming methods, affecting the surface quality of products and the formability of the sheet metal. The most basic and cheapest way to reduce friction is to use lubricants, which should ensure the highest lubrication efficiency and at the same time be environmentally friendly. Due to the trend towards sustainable production, vegetable oils have been used in research as an alternative to petroleum-based lubricants. The analysis of friction in sheet metal forming requires an appropriate tribotester simulating the friction conditions in a specific area of the sheet metal being formed. Research has used a special strip drawing tribometer, enabling the determination the value of the coefficient of friction in the blankholder zone in the deep drawing process. Quantitative analysis of the friction phenomenon is necessary at the stage of designing the technological process and selecting technological parameters, including blankholder pressure. This article presents the results of friction testing of 1.0338 (DC04) steel sheets using a strip drawing test. The experimental tests involved pulling a strip of sheet metal between two countersamples with a rounded surface. The tests were carried out on countersamples with different levels of roughness for the range of contact pressures occurring in the blankholder zone in the deep drawing process (1.7–5 MPa). The values of the coefficient of friction determined under dry friction conditions were compared with the results for edible (corn, sunflower and rapeseed) and non-edible (Moringa, Karanja) vegetable lubricants. The tested oils are the most commonly used vegetable-based biolubricants in metal forming operations. Multi-layer artificial neural networks were used to determine the relationship between the value of the contact pressure, the roughness of the countersamples, the oil viscosity and density, and the value of the coefficient of friction. Rapeseed oil provided the best lubrication efficiency during friction testing for all of the tested samples, with an average surface roughness of Sa 0.44–1.34 μm. At the same time, as the roughness of the countersamples increased, a decrease in lubrication efficiency was observed. The lowest root mean squared error value was observed for the MLP-4-8-1 network trained with the quasi-Newton algorithm. Most of the analysed networks with different architectures trained using the various algorithms showed that the kinematic viscosity of the oil was the most important aspect in assessing the friction of the sheets tested. The influence of kinematic viscosity on the value of the coefficient of friction is strongly dependent on the surface roughness of the countersamples.

Publisher

MDPI AG

Reference57 articles.

1. Joining the high-strength steel sheets used in car body production;Cmorej;Adv. Sci. Technol. Res. J.,2021

2. Numerical and experimental studies on clinch-bonded hybrid joining of steel sheet DX53D+Z;Cmorej;Acta Metall. Slovaca,2022

3. Modeling the strain localization of shell elements subjected to combined stretch–bend loads: Application on automotive sheet metal stamping simulations;Pham;Thin-Walled Struct.,2023

4. Sustainability issues in sheet metal forming processes: An overview;Ingarao;J. Clean. Prod.,2011

5. Application of the finite element method to simulate the friction phenomenon in a strip drawing test;Fejkiel;Adv. Mech. Mater. Eng.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3