Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization

Author:

Li Qidong1,Ghadiani Hesamedin1,Jalilvand Vahid1,Alam Tahrim2,Farhat Zoheir1ORCID,Islam Md.3ORCID

Affiliation:

1. Department of Mechanical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada

2. Enbridge Gas Inc., Ottawa, ON K1K 2C7, Canada

3. Mining Wear and Corrosion Laboratory, National Research Council Canada, Vancouver, BC V6T 1W5, Canada

Abstract

Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed, HE may lead to catastrophic environmental failures in vessels containing hydrogen, such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility, toughness, and strength, mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption, hydrogen diffusion, and hydrogen interactions with intrinsic trapping sites like dislocations, voids, grain boundaries, and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile, double cantilever beam, bent beam, and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior, mechanisms, and characterization techniques.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3