Affiliation:
1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2. School of Electromechanical and Intelligent Manufacturing, Huanggang Normal University, Huanggang 438000, China
Abstract
Stability and multifunctionality greatly extend the applications of phase change materials (PCMs) for thermal storage and management. Herein, CuS and Fe3O4 nanoparticles were successfully loaded onto cotton-derived carbon to develop a multifunctional interface with efficient photothermal conversion and electromagnetic interference (EMI) shielding properties. 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS) and expanded graphite (EG) formed an organic/inorganic three-dimensional network framework to encapsulate 1-octadecanol (OD) by self-assembly. Finally, multifunctional shape-stabilized PCMs (SSPCMs) with the sandwich structure were prepared by the hot-press process. Multifunctional SSPCMs with high load OD (91%) had favorable thermal storage density (200.6 J/g), thermal stability, and a relatively wider available temperature range with improved thermal conductivity to support the thermal storage and management realization. Furthermore, due to the synergistic enhancement of two nanoparticles and the construction of the carbon network with cotton carbon and EG, highly efficient photothermal conversion (94.4%) and EMI shielding (68.9 dB average, X-band) performance were achieved at about 3 mm thickness, which provided the possibility of the multifunctional integration of PCMs. Conclusively, this study provides new insights towards integrating solar energy utilization with the comprehensive protection of related electronics.
Funder
Technology and Innovation Major Project of Hubei
Optics Valley Science and Technology Innovation Corridor Project
Hubei Key Research and Development Programme
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献