Effect of Coffee Grounds/Coffee Ground Biochar on Cement Hydration and Adsorption Properties

Author:

Chen Yang123,Guo Rongxin123ORCID,Ma Feiyue123,Zhou Haoxue123,Zhang Miao123,Ma Qianmin123

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Kunming 650500, China

3. International Joint Laboratory for Green Construction and Intelligent Maintenance of Yunnan Province, Kunming 650500, China

Abstract

Taking advantage of the strong adsorption characteristics of coffee grounds (CGs) and coffee ground biochar (CGB), this research employed equal amounts of 2%, 4%, 6%, and 8% CGs and CGB to replace cement. This study thereby examined the impacts of CGs and CGB on cement compressive strength, as well as their abilities to adsorb chloride ions and formaldehyde. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG−DTG), scanning electron microscopy (SEM), and X−ray photoelectron spectroscopy (XPS) were employed to investigate the hydration mechanism and characterize the microscopic structure. The results show the following: (1) The presence of a substantial quantity of organic compounds in CGs is found to have an adverse effect on both the compressive strength and hydration degree of the sample. The use of CGB after high-temperature pyrolysis of phosphoric acid can effectively improve the negative impact of organic compounds on the sample. (2) The addition of CGs reduces the adsorption of chloride ions by cement, primarily due to the presence of fewer hydration products. However, when CGB was incorporated into cement, it enhanced the ability to adsorb chloride ions. (3) Cement containing 8% CGB content can slightly enhance the adsorption of formaldehyde. However, the cement sample with 8% CGB content exhibited the most significant ability to adsorb formaldehyde.

Funder

Yunnan Provincial Science and Technology Department major science and technology special plan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3