Tailoring Multiple Strengthening Phases to Achieve Superior High-Temperature Strength in Cast Mg-RE-Ag Alloys

Author:

Zhao Sicong1ORCID,Guo Erjun1,Liu Kun1,Li Jingfang2ORCID,Liu Jianhua3,Li Mingyang4

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

3. Heilongjiang Beidacang Group Co., Ltd., Qiqihar 161000, China

4. Qiqihar Heilong International Ice and Snow Equipment Co., Ltd., Qiqihar 161000, China

Abstract

Mg alloys with excellent high-temperature mechanical properties are urgently desired to meet the design requirements of new-generation aircraft. Herein, novel cast Mg-10Gd-2Y-0.4Zn-0.2Ca-0.5Zr-xAg alloys were designed and prepared according to the advantages of multi-component alloying. The SEM and XRD results revealed that the as-cast microstructures contained α-Mg grains, β, and Zr-containing phase. As Ag rose from 0 wt.% to 2.0 wt.%, the grain size was refined from 40.7 μm to 33.5 μm, and the β phase significantly increased. The TEM observations revealed that the nano-scaled γ′ phase could be induced to precipitate in the α-Mg matrix by the addition of Ag. The stacking sequence of lamellar γ′ phases is ABCA. The multiple strengthening phases, including β phase, γ′ phases, and Zr-containing particles, were effectively tailored through alloying and synergistically enhanced the mechanical properties. The ultimate tensile strength increased from 154.0 ± 3.5 MPa to 231.0 ± 4.0 MPa at 548 K when Ag was added from 0 to 2.0 wt.%. Compared to the Ag-free alloy, the as-cast alloy containing 2.0 wt.% Ag exhibited a minor reduction in ultimate tensile strength (7.0 ± 4.0 MPa) from 498 K to 548 K. The excellent high-temperature performance of the newly developed Mg-RE-Ag alloy has great value in promoting the use of Mg alloys in aviation industries.

Funder

China Postdoctoral Science Foundation

Heilongjiang Province Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3