Investigation of the Mechanical Behaviors and Damage Mechanism of C/C Composites Impacted by High-Velocity Jets

Author:

Yue Yifan1,Wang Bo123,Yan Kefei4,Zhao Renxi1,Zhang Chengyu5,Li Yulong26

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Shaanxi Key Laboratory of Impact Dynamics and Engineering Application, Xi’an 710072, China

3. National Key Laboratory of Strength and Structural Integrity, Xi’an 710065, China

4. The Sixth Academy of China Aerospace Science and Industry Corporation, Huhehaote 010010, China

5. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

6. School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Carbon/Carbon (C/C) composites exhibit excellent mechanical properties at high temperatures, making them widely used in aerospace, such as the leading edges of spaceplane wings and the nose cones of hypersonic aircraft. However, damage caused by rain erosion to C/C composites affects their mechanical properties and poses significant challenges during operational service periods. A jet impingement test platform was employed to conduct single and multiple water-jet erosion tests on three-dimensional orthogonal C/C composite materials and to investigate the residual mechanical properties of the specimens after jet impact. The damage was characterized using optical microscopy, scanning electron microscopy, and X-ray computed tomography. The results showed that the damage types of the C/C composite materials under water-jet impingement included fiber bundle fracturing, delamination, and debonding. The extent of erosion damage was positively correlated with the jet velocity and diameter. The changes in the multi-jet damage indicated a cumulative expansion process, and z-directional fiber bundles exhibited superior resistance to jet impact damage propagation. The results of the three-point bending tests showed that the greater the initial impact damage, the lower the residual mechanical properties of the materials, and the residual strength of the specimen suddenly decreased when damage occurred at the back of the specimen.

Funder

National Natural Science Foundation of China

Independent research project of the National Key Laboratory of Strength and Structural Integrity

111 Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3