Affiliation:
1. Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA
2. School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
Abstract
During the periparturient period, cows undergo heightened energy demands at lactation onset, paired with reduced dry matter intake, leading to negative energy balance (NEB). Excessive lipolysis-driven adipose tissue remodeling, triggered by NEB, significantly contributes to ketosis in periparturient dairy cows. However, the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of ketosis and in modulating adipose tissue function remains poorly understood. Here, we investigated how ketosis affects the transcriptional profile and secretome of PBMCs and its influence on preadipocyte function in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Twenty-one postpartum Holstein dairy cows were categorized as either subclinical ketosis (SCK; BHB ≥ 1.0 mM) or control (CON; BHB < 0.8 mM) based on blood beta-hydroxybutyrate (BHB) concentration screening. Blood samples were collected intravenously for the isolation of PBMCs and serum metabolic profiling. Ketosis elevated circulating NEFA and BHB levels but reduced total WBC and neutrophil counts. Isolated PBMCs were evaluated for gene expression and used to produce conditioned media (PBMC-CM), during which PBMCs were stimulated with 10 ng/mL LPS. The overall phenotype of PBMCs was largely consistent between SCK and CON cows, with minimal differences detected in immunomodulatory cytokine expression and PBMC-CM composition following stimulation. Preadipocytes isolated from non-ketotic cows were treated with PBMC-CM to assess the effect of PBMC secretomes on adipose cell function. Preadipocytes treated with SCK PBMC-CM showed reduced lipid accumulation compared to those treated with CON PBMC-CM regardless of the depot. SAT preadipocytes had heightened expression of lipid metabolism-related genes, including DGAT1, LIPE, and FASN, compared to VAT when treated with SCK PBMC-CM. Preadipocytes treated with CM from PBMC stimulated by LPS exhibited upregulation in IL1B and IL6 regardless of the depot or source of PBMCs. Together, these results indicate that although PBMC profiles showed minimal differences, preadipocytes treated with PBMC-CM may be influenced by additional factors, leading to altered preadipocyte function and gene expression that may contribute to adipose cellular dysfunction.
Funder
U.S. Department of Agriculture National Institute of Food and Agriculture