Assessment of Encapsulated Probiotic Lactococcus lactis A12 Viability Using an In Vitro Digestion Model for Tilapia
Author:
Valle Vargas Marcelo Fernando1ORCID, Quintanilla-Carvajal María Ximena1ORCID, Villamil-Diaz Luisa1ORCID, Ruiz Pardo Ruth Yolanda1ORCID, Moyano Francisco Javier2ORCID
Affiliation:
1. Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia 2. Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain
Abstract
Probiotics face harsh conditions during their transit through the gastrointestinal tract (GIT) of fish because of low-pH environments and intestine fluid. Therefore, the evaluation of probiotic viability under simulated gastrointestinal conditions is an important step to consider for probiotic supplementation in fish feed prior to in vivo trials. Therefore, this study aimed to evaluate the effect of stomach and intestinal simulated conditions on the viability of encapsulated Lactococcus lactis A12 using an in vitro digestion model for tilapia. A Box Behnken design was used to evaluate the potential effect of three factors, namely stomach pH, residence time in the stomach, and enzyme quantity, on the viability of encapsulated Lactococcus lactis A12. As the main results, low pH (4.00), long residence time (4 h), and enzyme quantity (2.68 U of total protease activity) led to lower final cell counts after the phases of the stomach and intestine. Encapsulated probiotic bacteria showed higher viability (p < 0.05) and antibacterial activity (p < 0.05) against the pathogen Streptococcus agalactiae than non-encapsulated bacteria. The results suggest that L. lactis A12 survives in GIT conditions and that the proposed in vitro model could be used to explore the viability of probiotic bacteria intended for fish feed supplementation.
Funder
Universidad de La Sabana
Reference55 articles.
1. FAO (2024). The State of World Fisheries and Aquaculture 2024, FAO. 2. Karvonen, A., Räihä, V., Klemme, I., Ashrafi, R., Hyvärinen, P., and Sundberg, L.-R. (2021). Quantity and Quality of Aquaculture Enrichments Influence Disease Epidemics and Provide Ecological Alternatives to Antibiotics. Antibiotics, 10. 3. Zarantoniello, M., Bortoletti, M., Olivotto, I., Ratti, S., Poltronieri, C., Negrato, E., Caberlotto, S., Radaelli, G., and Bertotto, D. (2021). Salinity, Temperature and Ammonia Acute Stress Response in Sea Bream (Sparus aurata) Juveniles: A Multidisciplinary Study. Animals, 11. 4. Saccharomyces cerevisiae as Probiotic, Prebiotic, Synbiotic, Postbiotics and Parabiotics in Aquaculture: An Overview;Bonadero;Aquaculture,2023 5. Ibrahim, M., Ahmad, F., Yaqub, B., Ramzan, A., Imran, A., Afzaal, M., Mirza, S.A., Mazhar, I., Younus, M., and Akram, Q. (2020). Current Trends of Antimicrobials Used in Food Animals and Aquaculture. Antibiotics and Antimicrobial Resistance Genes in the Environment, Elsevier.
|
|