Identifying the Influencing Factors of Plastic Film Mulching on Improving the Yield and Water Use Efficiency of Potato in the Northwest China

Author:

Xu Juzhen12,Wang Yanbo2,Chen Yuanquan2ORCID,He Wenqing1,Li Xiaojie1,Cui Jixiao1ORCID

Affiliation:

1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

Abstract

Potato is an important crop in the Northwest China, however, its production is constrained by water scarcity. Plastic mulching film is an efficient technical measure to alleviate potato production restrictions. Therefore, studying the response of potato yield and water use efficiency to plastic mulching film is of great significance. The study conducted a meta-analysis to quantify the effect of plastic film on potato yield and water use efficiency in the Northwest. The study then quantified the effects of different levels of natural conditions (mean annual precipitation, mean annual accumulated temperature ≥ 10 °C), fertilizer application (nitrogen fertilizer, phosphate fertilizer, potassium fertilizer), cultivation measures (planting density, cultivation method, mulching method), and mulching properties (mulching color, mulching thickness) through subgroups analysis. Finally, the random forest model was used to quantify the importance of factors. Plastic film mulching increased yield by 27.17% and water use efficiency by 27.16%, which had a better performance under relatively lower mean annual precipitation, low mean annual accumulated temperature ≥ 10 °C, relatively lower fertilizer application, planting density of 15,000–45,000 plants·ha−1, ridge, and black mulching. Natural conditions, fertilization measures were vital to improve productivity. The research results can provide reference for agricultural management strategies of potato cultivation using plastic film in the Northwest China and other potato-producing areas.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3