Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks

Author:

Wolters Tim1ORCID,Berthold Georg2,Kunkel Ralf1ORCID,Tetzlaff Björn1ORCID,Thomas Axel23,Zacharias Michael2,Wendland Frank1ORCID

Affiliation:

1. Forschungszentrum Juelich, IBG-3, 52425 Juelich, Germany

2. Hessisches Landesamt für Naturschutz, Umwelt und Geologie (HLNUG), Rheingaustraße 186, 65203 Wiesbaden, Germany

3. GIS-Service GmbH, Am Graben 1, 55263 Wackernheim, Germany

Abstract

For the Hessian river basins, an area-differentiated modeling of the nitrogen input to the groundwater and surface waters was carried out for six diffuse input pathways and six point source input pathways on the basis of the geodata available at the state level. In this context, extensive plausibility checks of the model results were carried out using the data from several official monitoring networks at the state level. These include the comparison of modeled runoff components and input pathways for nitrogen using the data from the network of discharge monitoring stations. For the validation of the modeled nitrate concentrations in the leachate, the data from groundwater monitoring wells for controlling the chemical status of groundwater were used. The validation of the modeled nitrate inputs to the groundwater and denitrification in the groundwater was carried out using the data from a special monitoring network of groundwater monitoring wells that include N2/Ar measurements. The data from the Surface Water Quality Monitoring Network were used to verify the plausibility of the modeled total N inputs to the surface waters from diffuse sources and from point sources. All of the model results evaluated by the plausibility checks prove that the nitrate pollution situation in Hesse is adequately represented by the model. This is a prerequisite for accepting the model results at the state level as a basis for developing and implementing regionally appropriate mitigation measures. The Hessian State Agency for Nature Conservation, Environment and Geology uses the model results in the broader context of the work on implementing the EU Water Framework Directive and the EU Nitrate Directive.

Funder

Hessian Agency for Nature Conservation, Environment and Geology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3