Elastic Wave Application for Damage Detection in Concrete Slab with GFRP Reinforcement

Author:

Ziaja DominikaORCID,Jurek MichałORCID,Wiater AgnieszkaORCID

Abstract

The aim of the presented examination is condition-monitoring of GFRP-reinforced concrete structural members using elastic wave propagation. As an example, a deck slab is selected. The deck slab is made of concrete of the targeted C30/37 class under three-point bending. During loading cycles, the specimen is observed with a digital image correlation (DIC) system, which enables calculation of the strain field. The measuring setup consists of two Baumer 12.3 Mpx cameras with VS-1220HV lenses, combined in a Q400 system by Dantec Dynamics GmbH. Elastic waves are also measured based on signals recorded with PZT (lead–zirconate–titanate) sensors. Additionally, the typical crack-opening measurements are made. The appearance of a crack and its growth causes changes in both the shape and amplitude of the registered signals. However, the changes are not obvious and depend on the location of the sensors. Due to the impossibility of determining simple parameters with respect to disturbingly wide cracks, for damage detection, an artificial neural network (ANN) is applied. Perfect determination of the specimen’s condition (100% properly classified patterns) is possible based on whether the element is under loading or not.

Funder

National Science Centre

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3