Effect of Shot Peen Forming on Corrosion-Resistant of 2024 Aluminum Alloy in Salt Spray Environment

Author:

Qiao Jingzhen,Zhang Xiaowen,Chen Guoqing,Zhou Wenlong,Fu Xuesong,Wang Junwei

Abstract

The effect of shot peen forming on the corrosion-resistant of 2024 aluminum alloy in a salt spray environment was studied with an electrochemical workstation. The surface morphology and cross sectional morphology of the original and shot peen-formed sample were studied by a scanning electron microscope. After shot peen forming, the salt spray corrosion resistance of 2024 aluminum alloy was worsened (the corrosion rates of the original alloy and the shot peen-formed alloy were 0.10467 mg/(cm2·h) and 0.27333 mg/(cm2·h), respectively, when the salt spray corrosion time was 5 h). The radius of capacitive reactance arc of the sample subjected to shot peen forming was smaller than that of the original sample. When the salt spray corrosion time was 5 h, the doping density (NA) of the original alloy was 2.5128 × 10−13/cm3. After shot peen forming, the NA of the alloy increased to 15 × 10−13/cm3. For the shot peen-formed sample, pitting corrosion first occurred in the crater lap zone and became severe with salt spray time. The cross sectional morphology of both original and the shot peen-formed samples shows that severe intergranular corrosion occurred in the salt spray environment. However, for the original sample, the intergranular corrosion distribution was lamellar. For shot peen-formed sample, the intergranular corrosion distribution was network.

Funder

the National Key Research and Development Program

the Cultivation of interdisciplinary research platform of Dalian University of Technology

the Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater;Soha;Surf. Interfaces,2019

2. Sheasby, P.G., Pinner, R., and Wernick, S. (2001). The Surface Treatment and Finishing of Aluminium and Its Alloys, ASM International.

3. Development of super-hydrophobic surface on Al 6061 by anodizing and the evaluation of its corrosion behavior;Mokhtari;Surf. Coat. Technol.,2017

4. Need for new materials in aging aircraft structures;Bucci;J. Aircr.,2000

5. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding;Li;Surf. Coat. Technol.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3