Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate

Author:

Veselinović Ljiljana,Mitrić Miodrag,Mančić LidijaORCID,Jardim Paula M.,Škapin Srečo Davor,Cvjetićanin NikolaORCID,Milović Miloš D.ORCID,Marković SmiljaORCID

Abstract

This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Faculty of Physical Chemistry, University of Belgrade

Science Fund of the Republic of Serbia

COPPE at UFRJ

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3