Influence of Plasma Treatment Parameters on the Structural-Phase Composition, Hardness, Moisture-Resistance, and Raman-Enhancement Properties of Nitrogen-Containing Titanium Dioxide

Author:

Muslimov Arsen E.ORCID,Gadzhiev Makhach Kh.,Kanevsky Vladimir M.

Abstract

The paper shows, for the first time, the prospects of treatment with a quasi-equilibrium low-temperature nitrogen plasma in an open atmosphere for the formation of super-hard, super-hydrophobic TiN/TiO2 composite coatings with pronounced Raman-enhancement properties. X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy, as well as the analysis of hardness and moisture-resistance properties, are used as analytical research methods. During plasma treatment of titanium films on sapphire with a mass average temperature of 4–6 kK, an X-ray amorphous hydrophilic titanium oxide film with a low nitrogen content is formed. The nitrogen content in titanium oxide films increases with increasing treatment temperature up to 6–7 kK. In this case, an X-ray amorphous hydrophobic film is formed. With a further increase in temperature to 7–10 kK, a TiN/TiO2 composite structure based on polycrystalline rutile is formed with increased hydrophobicity and pronounced Raman enhancement properties due to the effective excitation of surface plasmon polaritons. The presence of the crystalline phase increases the dephasing time, which determines the quality of the resonance and the achievable amplification of the electromagnetic field near the TiN inclusions. All treated films on sapphire have a super-hardness above 25 GPa (Vickers hardness test) due to high grain size, the presence of nitrogen-containing inclusions concentrated along grain boundaries, and compressive stresses.

Funder

Ministry of Science and Higher Education of the Russian Federation for FSRC “Crystallography and Photonics” RAS

Federal State Budget Institution JIHT RAS

RFBR

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3