Synthesis Optimization of BaGdF5:x%Tb3+ Nanophosphors for Tunable Particle Size

Author:

Polyakov VladimirORCID,Gadzhimagomedova ZairaORCID,Kirsanova DariaORCID,Soldatov Alexander

Abstract

X-ray photodynamic therapy (XPDT) is aimed at the treatment of deep-located malignant tumors thanks to the high penetration depth of X-rays. In XPDT therapy, it is necessary to use materials that effectively absorb X-rays and convert them into visible radiation-nanophosphors. Rare-earth elements, fluorides, in particular, doped BaGdF5, are known to serve as efficient nanophosphor. On the other hand, the particle size of nanophosphors has a crucial impact on biodistribution, cell uptake, and cytotoxicity. In this work, we investigated various Tb:Gd ratios in the range from 0.1 to 0.5 and optimized the terbium content to achieve the maximum luminescence under X-ray excitation. The effect of temperature, composition of the ethylene glycol/water solvent, and the synthesis technique (solvothermal and microwave) on the size of the nanophosphors was explored. It was found that the synthesis techniques and the solvent composition had the greatest influence on the averaged particle size. By varying these two parameters, it is possible to tune the size of the nanophosphor particles, which make them suitable for biomedical applications.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3