Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output

Author:

Shi Ruifeng12ORCID,Gao Yuqin1,Ning Jin1,Tang Keyi1,Jia Limin23ORCID

Affiliation:

1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

2. China Institute of Energy and Transportation Integrated Development, North China Electric Power University, Beijing 102206, China

3. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Abstract

Highways are a critical consumer of energy. The integration of the highway and the energy system (ES) is a proven method towards carbon neutrality. The increasing energy demands of highway transportation infrastructure and the development of distributed energy and energy storage technologies drive the coupling between the highway system (HS) and the energy supply network, which is becoming tighter than ever before. Many scholars have explored the mode and path of integrated transportation and energy development. However, the energy and transportation systems’ coupling relationship and the collaborative planning scheme have not been thoroughly studied. Facing the increasing interconnection between transportation and energy networks, as well as addressing the demand for clean energy in highway transportation effectively, this paper proposes a highway self-consistent energy system (HSCES) planning model integrating uncertain wind and photovoltaic (PV) power output, so as to analyze the energy supply mode of the HS and determine the multi-energy capacity configuration of the self-consistent energy system (SCES). Firstly, the mathematical model related to each micro-generator of the SCES and the load aggregation scenario of the HS is established. Secondly, considering the uncertainty of renewable energy, this paper focuses on wind and PV power generation, and abatement technology, under uncertain conditions to ensure the best solution for reliability. Thirdly, taking the economy, reliability and the renewable energy utilization rate of the system into account, the system planning model is established under the condition of ensuring the system correlation constraints. Finally, the proposed method is validated using a section of the highway transportation system in western China. The results show that the hybrid energy storage planning scheme can cause the system’s renewable energy utilization rate to reach 99.61%, and the system’s power supply reliability to reach 99.74%. Therefore, it is necessary to carry out coordinated planning while considering the characteristics of the HS and the ES, which can minimize the planning cost of a HSCES, reduce the waste of wind and solar energy, and ensure the reliability of the power supply for the HS.

Funder

National Key R&D plan Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference47 articles.

1. A survey on energy internet: Architecture, approach, and emerging technologies;Wang;IEEE Syst. J.,2017

2. Integrated energy management system with multi-energy flow for Energy Internet: Design and application;Sun;Autom. Electr. Power Syst.,2019

3. The framework and key technologies of traffic energy internet;Hu;Proc. CSEE,2018

4. Road Transportation and Energy Integration Strategy in China;Jia;Strateg. Study CEA,2022

5. Prediction of transportation energy demand: Multivariate adaptive regression splines;Sahraei;Energy,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3