Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather

Author:

Hou Guangyang1ORCID

Affiliation:

1. School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 80523, USA

Abstract

Connected and autonomous vehicles (CAVs) are expected to significantly improve traffic efficiency and safety. However, the overall impacts of CAVs on mixed traffic have not been clearly studied because most previous research focused on one subset of the performance of mixed traffic. This study aims to provide complete information for the policymakers to make better decisions on future CAV implementation strategies with a comprehensive evaluation of the overall performance of mixed traffic. With this purpose, this study develops an integrated framework to evaluate the efficiency and safety of mixed traffic with CAVs under adverse weather conditions, which is composed of a traffic simulation, multi-vehicle crash model, single-vehicle crash model, and performance assessment. For the first time, a unified performance index is introduced to reflect the overall efficiency and safety performance of mixed traffic. The proposed framework is demonstrated with an evaluation of the performance of mixed traffic on a highway segment. Traffic efficiency and safety under different weather conditions are investigated. The impact of reaction time of human-driving vehicles (HDVs) and CAVs are also studied. Simulation results show that the overall traffic performance in terms of traffic efficiency, multi-vehicle safety, and single-vehicle safety increases with the increase in the market penetration rate (MPR). In addition, it is found that CAVs have a greater impact on improving overall traffic performance under rainy and snowy weather than in clear weather. Moreover, a shorter reaction time of HDVs and CAVs can lead to better overall traffic performance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Highway Capacity Manual Capacity Adjustment Factor Development for Connected and Automated Traffic at Signalized Intersections;Adebisi;J. Transp. Eng. Part A Syst.,2022

2. Safety Evaluation for Connected and Autonomous Vehicles’ Exclusive Lanes considering Penetrate Ratios and Impact of Trucks Using Surrogate Safety Measures;Zhang;J. Adv. Transp.,2020

3. Litman, T. (2017). Autonomous Vehicle Implementation Predictions, Victoria Transport Policy Institute.

4. Developing highway capacity manual capacity adjustment factors for connected and automated traffic on freeway segments;Adebisi;Transp. Res. Rec.,2020

5. Evaluating the impact of connected and autonomous vehicles on traffic safety;Ye;Phys. A Stat. Mech. Appl.,2019

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3