Study on the Influence of Solar Array Tube on Thermal Environment of Greenhouse

Author:

Zhao Mingzhi1,Liu Yingjie1,Bao Daorina1,Hu Xiaoming1,Wang Ningbo1,Liu Lei1

Affiliation:

1. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

The stratum and microenvironment temperatures in a greenhouse are important factors that affect crop yield. In order to solve the problem of temperature imbalance caused by solar radiation in greenhouses, this paper proposes the application of a solar radiation array tube in a greenhouse. By adding water or phase change materials to the array tube, the influence of the array tube on the formation and microenvironment temperature changes was studied, and a 10-day test was carried out. A test group and control group were set up to monitor test results, and the ground was divided into six areas. The depths of each area were 10 cm, 30 cm, and 50 cm, and the heights of the greenhouse centers were 0 cm, 30 cm, 60 cm, 90 cm, 120 cm, 150 cm, and 180 cm. Via an analysis of the test results obtained for the formation and microenvironment temperature, the arrangement of the array tube was found to exert a constant temperature regulation effect on the microenvironment of the greenhouse at a formation depth of 10 cm and was able to improve this formation depth to a certain extent. The temperature at 30 cm and 50 cm plays a positive role in building a good vegetation growth environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3