OpenCNN: A Winograd Minimal Filtering Algorithm Implementation in CUDA

Author:

Castro Roberto L.ORCID,Andrade DiegoORCID,Fraguela Basilio B.ORCID

Abstract

Improving the performance of the convolution operation has become a key target for High Performance Computing (HPC) developers due to its prevalence in deep learning applied mainly to video processing. The improvement is being pushed by algorithmic and implementation innovations. Algorithmically, the convolution can be solved as it is mathematically enunciated, but other methods allow to transform it into a Fast Fourier Transform (FFT) or a GEneral Matrix Multiplication (GEMM). In this latter group, the Winograd algorithm is a state-of-the-art variant that is specially suitable for smaller convolutions. In this paper, we present openCNN, an optimized CUDA C++ implementation of the Winograd convolution algorithm. Our approach achieves speedups of up to 1.76× on Turing RTX 2080Ti and up to 1.85× on Ampere RTX 3090 with respect to Winograd convolution in cuDNN 8.2.0. OpenCNN is released as open-source software.

Funder

Predoctoral grant, Formación de Profesorado Universitario

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

2. Deep Learning Scaling is Predictable, Empirically;Hestness;arXiv,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Im2col-Winograd: An Efficient and Flexible Fused-Winograd Convolution for NHWC Format on GPUs;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Model compression of deep neural network architectures for visual pattern recognition: Current status and future directions;Computers and Electrical Engineering;2024-05

3. Novel accelerated methods for convolution neural network with matrix core;The Journal of Supercomputing;2023-05-30

4. Going Further With Winograd Convolutions: Tap-Wise Quantization for Efficient Inference on 4x4 Tiles;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3