Expected Shortfall Reliability—Added Value of Traditional Statistics and Advanced Artificial Intelligence for Market Risk Measurement Purposes

Author:

Carrillo Menéndez Santiago,Hassani Bertrand Kian

Abstract

The Fundamental Review of the Trading Book is a market risk measurement and management regulation recently issued by the Basel Committee. This reform, often referred to as “Basel IV”, intends to strengthen the financial system. The newest capital standard relies on the use of the Expected Shortfall. This risk measure requires to get sufficient information in the tails to ensure its reliability, as this one has to be alimented by a sufficient quantity of relevant data (above the 97.5 percentile in the case of the regulation or interest). In this paper, after discussing the relevant features of Expected Shortfall for risk measurement purposes, we present and compare several methods allowing to ensure the reliability of the risk measure by generating information in the tails. We discuss these approaches with respect to their relevance considering the underlying situation when it comes to available data, allowing practitioners to select the most appropriate approach. We apply traditional statistical methodologies, for instance distribution fitting, kernel density estimation, Gaussian mixtures and conditional fitting by Expectation-Maximisation as well as AI related strategies, for instance a Synthetic Minority Over-sampling Technique implemented in a regression environment and Generative Adversarial Nets.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Minimum capital requirements for market riskhttps://www.bis.org/bcbs/publ/d457.htm

2. Modeling transportation supply and demand forecasting using artificial intelligence parameters (Bayesian model)

3. Fuzzy control system design for wheel slip prevention and tracking of desired speed profile in electric trains

4. AI and the future of pharmaceutical research;Zielinski;arXiv,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3