An Intelligent Web Service Composition and Resource-Optimization Method Using K-Means Clustering and Knapsack Algorithms

Author:

Alhadid IssamORCID,Khwaldeh Sufian,Al Rawajbeh Mohammad,Abu-Taieh EvonORCID,Masa’deh Ra’edORCID,Aljarah IbrahimORCID

Abstract

Service-oriented architecture (SOA) has emerged as a flexible software design style. SOA focuses on the development, use, and reuse of small, self-contained, independent blocks of code called web services that communicate over the network to perform a certain set of simple tasks. Web services are integrated as composite services to offer complex tasks and to provide the expected services and behavior in addition to fulfilling the clients’ requests according to the service-level agreement (SLA). Web service selection and composition problems have been a significant area of research to provide the expected quality of service (QoS) and to meet the clients’ expectations. This research paper presents a hybrid web service composition model to solve web service selection and composition problems and to optimize web services’ resource utilization using k-means clustering and knapsack algorithms. The proposed model aims to maximize the service compositions’ QoS and minimize the number of web services integrated within the service composition using the knapsack algorithm. Additionally, this paper aims to track the service compositions’ QoS attributes by evaluating and tracking the web services’ QoS using the reward function and, accordingly, use the k-means algorithm to decide to which cluster the web service belongs. The experimental results on a real dataset show the superiority and effectiveness of the proposed algorithm in comparison with the results of the state–action–reward–state–action (SARSA) and multistage forward search (MFS) algorithms. The experimental results show that the proposed model reduces the average time of the web service selection and composition processes to 37.02 s in comparison to 47.03 s for the SARSA algorithm and 42.72 s for the MFS algorithm. Furthermore, the average of web services’ resource utilization results increased by 4.68% using the proposed model in comparison to the resource utilization by the SARSA and MFS algorithms. In addition, the experimental results showed that the average number of service compositions using the proposed model improved by 26.04% compared with the SARSA and MFS algorithms.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Web Services Architecturehttp://www.w3.org/TR/ws-arch/

2. Composition of Web Services Using Markov Decision Processes and Dynamic Programming

3. Web Services Composition Using Dynamic Classification and Simulated Annealing

4. Hierarchical clustering of business process models;Jung;Int. J. Innov. Comput. Inf. Control,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3