Visual Static Hand Gesture Recognition Using Convolutional Neural Network

Author:

Eid Ahmed12ORCID,Schwenker Friedhelm1ORCID

Affiliation:

1. Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany

2. Computer Science Engineering Department, German University in Cairo, Cairo 11835, Egypt

Abstract

Hand gestures are an essential part of human-to-human communication and interaction and, therefore, of technical applications. The aim is increasingly to achieve interaction between humans and computers that is as natural as possible, for example, by means of natural language or hand gestures. In the context of human-machine interaction research, these methods are consequently being explored more and more. However, the realization of natural communication between humans and computers is a major challenge. In the field of hand gesture recognition, research approaches are being pursued that use additional hardware, such as special gloves, to classify gestures with high accuracy. Recently, deep learning techniques using artificial neural networks have been increasingly proposed for the problem of gesture recognition without using such tools. In this context, we explore the approach of convolutional neural network (CNN) in detail for the task of hand gesture recognition. CNN is a deep neural network that can be used in the fields of visual object processing and classification. The goal of this work is to recognize ten types of static hand gestures in front of complex backgrounds and different hand sizes based on raw images without the use of extra hardware. We achieved good results with a CNN network architecture consisting of seven layers. Through data augmentation and skin segmentation, a significant increase in the model’s accuracy was achieved. On public benchmarks, two challenging datasets have been classified almost perfectly, with testing accuracies of 96.5% and 96.57%.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wearable glove gesture recognition based on fiber Bragg grating sensing using genetic algorithm-back propagation neural network;Optical Fiber Technology;2024-10

2. Gesture-Driven Communication and Empowering the Deaf-Mute Community Using Deep Learning Algorithm;Advances in Human and Social Aspects of Technology;2024-06-14

3. GestureEcho: A Silent Symphony of Art with Hand Tracking and Voice-Guided Drawing;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. Certain Investigations on Hand Gesture Recognition Systems;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

5. Fusion of Attention-Based Convolution Neural Network and HOG Features for Static Sign Language Recognition;Applied Sciences;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3