Spatio-Temporal Patterns of Warm-Season Ground Surface Temperature—Surface Air Temperature Difference over China Mainland

Author:

Long Yiwen1ORCID,Ren Guoyu12ORCID

Affiliation:

1. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

2. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China

Abstract

Examining large-scale characteristics of the difference between ground surface temperature (GST) and surface air temperature (SAT) and its long-term trend will help understand land surface energy exchange and the effect of land-atmosphere interaction on climate change and variability. Based on a homogenized monthly dataset of GST and SAT from 1961 to 2018, this study analyzes the spatial distribution and long-term trend of the difference between ground surface temperature and surface air temperature (GST–SAT) in the warm season (April to October) over China mainland. The results show that the warm-season mean GST–SAT in the Qinghai-Tibet Plateau and the northwestern deserts have the largest GST–SAT. On average, the GST–SAT in China is the greatest in summer, with the maximum monthly value occurring in July. During 1961–2018, the warm-season mean GST–SAT undergoes a significant increasing trend (0.04 °C/10yr, p < 0.01), with the largest increase seen in mid-late spring (April and May), and the smallest increase in August. Spatially, the GST–SAT increases significantly in the northern region, decreases slightly in the southern region, and remains unchanged in the Qinghai-Tibet Plateau. The warm-season mean GST–SAT is significantly positively correlated with altitude and sunshine duration (R = 0.50, 0.40; p < 0.05), and significantly negatively correlated with relative humidity and precipitation (R = 0.48, −0.42; p < 0.05), in the country on a whole in the analysis period.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consistent Ground Surface Temperature Climatology Over China: 1956–2022;Journal of Geophysical Research: Atmospheres;2024-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3