Optimal Modeling of Sustainable Land Use Planning under Uncertain at a Watershed Level: Interval Stochastic Fuzzy Linear Programming with Chance Constraints

Author:

Qiu Bingkui1,Tu Yan2,Ou Guoliang3,Zhou Min4ORCID,Zhu Yifan4,Liu Shuhan4,Ma Haoyang4

Affiliation:

1. Department of Tourism Management, Jin Zhong University, Jinzhong 033619, China

2. Hunan Institute of Science and Technology Information, Changsha 410001, China

3. School of Construction and Environmental Engineering, Shenzhen Polytechnic, Number 7098, Liuxian Dadao, Nanshan District, Shenzhen 518055, China

4. College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

In this paper, an uncertain interval stochastic fuzzy chance constraint land use optimal allocation method is proposed and applied to solve the problem of land use planning in river basins. The UISFCL-LUP method is an aggregation of interval parametric programming, fuzzy linear programming and chance constraint programming which can cope with uncertain problems such as interval value, fuzzy set and probability. In this paper, the uncertain mathematical method is explored and studied in the optimal allocation of land use in the next two planning periods of Nansihu Lake Basin in China. Moreover, it was proved that ISFCL-LUP can deal with the uncertainty of interval, membership function and probability representation and can also be used to solve the land use planning and land use strategy analysis under uncertain conditions. On the basis of model calculations, we obtained the optimal allocation results for six types of land use in four regions over two planning periods based on different environmental constraints. The results show that the optimized λ value (that is, the degree of satisfaction with all the model conditions) is in the range of [0.54, 0.79] and the corresponding system benefits are between [18.4, 20.4] × 1012 RMB and [96.7, 109.3] × 1012 RMB. The results indicate that land managers can make judgments based on the different socio-economic development needs of different regions and determine strategic land use allocation plans under uncertain conditions. At the same time, the model obtained interval solutions under different system satisfaction and constraint violation probabilities, which helps land managers to analyze the importance of land system optimization and sustainable development more deeply.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3