Mobile Sensor Path Planning for Kalman Filter Spatiotemporal Estimation

Author:

Mei Jiazhong1ORCID,Brunton Steven L.2,Kutz J. Nathan13ORCID

Affiliation:

1. Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

2. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

3. Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

The estimation of spatiotemporal data from limited sensor measurements is a required task across many scientific disciplines. In this paper, we consider the use of mobile sensors for estimating spatiotemporal data via Kalman filtering. The sensor selection problem, which aims to optimize the placement of sensors, leverages innovations in greedy algorithms and low-rank subspace projection to provide model-free, data-driven estimates. Alternatively, Kalman filter estimation balances model-based information and sparsely observed measurements to collectively make better estimation with limited sensors. It is especially important with mobile sensors to utilize historical measurements. We show that mobile sensing along dynamic trajectories can achieve the equivalent performance of a larger number of stationary sensors, with performance gains related to three distinct timescales: (i) the timescale of the spatiotemporal dynamics, (ii) the velocity of the sensors, and (iii) the rate of sampling. Taken together, these timescales strongly influence how well-conditioned the estimation task is. We draw connections between the Kalman filter performance and the observability of the state space model and propose a greedy path planning algorithm based on minimizing the condition number of the observability matrix. This approach has better scalability and computational efficiency compared to previous works. Through a series of examples of increasing complexity, we show that mobile sensing along our paths improves Kalman filter performance in terms of better limiting estimation and faster convergence. Moreover, it is particularly effective for spatiotemporal data that contain spatially localized structures, whose features are captured along dynamic trajectories.

Funder

AI Institute in Dynamic Systems

United States Air Force Office of Scientific Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3