Statistical Parameters Extracted from Radar Sea Clutter Simulated under Different Operational Conditions

Author:

Pai Yung-Cheng1,Kiang Jean-Fu1ORCID

Affiliation:

1. Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

A complete framework of predicting the attributes of sea clutter under different operational conditions, specified by wind speed, wind direction, grazing angle, and polarization, is proposed for the first time. This framework is composed of empirical spectra to characterize sea-surface profiles under different wind speeds, the Monte Carlo method to generate realizations of sea-surface profiles, the physical-optics method to compute the normalized radar cross-sections (NRCSs) from individual sea-surface realizations, and regression of NRCS data (sea clutter) with an empirical probability density function (PDF) characterized by a few statistical parameters. JONSWAP and Hwang ocean-wave spectra are adopted to generate realizations of sea-surface profiles at low and high wind speeds, respectively. The probability density functions of NRCSs are regressed with K and Weibull distributions, each characterized by two parameters. The probability density functions in the outlier regions of weak and strong signals are regressed with a power-law distribution, each characterized by an index. The statistical parameters and power-law indices of the K and Weibull distributions are derived for the first time under different operational conditions. The study reveals succinct information of sea clutter that can be used to improve the radar performance in a wide variety of complicated ocean environments. The proposed framework can be used as a reference or guidelines for designing future measurement tasks to enhance the existing empirical models on ocean-wave spectra, normalized radar cross-sections, and so on.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3