Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network

Author:

Žnidarec Matej,Klaić Zvonimir,Šljivac Damir,Dumnić BorisORCID

Abstract

Expanding the number of photovoltaic (PV) systems integrated into a grid raises many concerns regarding protection, system safety, and power quality. In order to monitor the effects of the current harmonics generated by PV systems, this paper presents long-term current harmonic distortion prediction models. The proposed models use a multilayer perceptron neural network, a type of artificial neural network (ANN), with input parameters that are easy to measure in order to predict current harmonics. The models were trained with one-year worth of measurements of power quality at the point of common coupling of the PV system with the distribution network and the meteorological parameters measured at the test site. A total of six different models were developed, tested, and validated regarding a number of hidden layers and input parameters. The results show that the model with three input parameters and two hidden layers generates the best prediction performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep HarDec: Deep Neural Network Applied to Estimate Harmonic Decomposition;Energy Informatics;2023-12-02

2. Active Power Filters Applied to Smart Grids: Harmonic Content Estimation Based on Deep Neural Network;Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications;2023-11-22

3. Adaptive harmonic prediction algorithm for power system based on LSSVM;5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023);2023-08-10

4. An artificial neural network based harmonic distortions estimator for grid- connected power converter-based applications;Ain Shams Engineering Journal;2023-04

5. Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply;Mathematics;2023-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3