Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression

Author:

Gao Zhenhai,Zhang Xiaoting,Xiao Yang,Gao Hao,Wang Huiyuan,Piao Changhao

Abstract

The study on the damage tolerance and failure mechanism of lithium-ion batteries (LIBs) subject to mechanical attack has attracted considerable attention. The electrochemical performance and thermal behavior of LIB were significantly affected by operation temperature and charging rate, but the dependence of these two factors on mechanical response remains unclear. Hence, we investigated how the environmental temperatures and rates in charging process affected the mechanical response characteristics of 18650 LIB cells. The onset of the short circuit in the cells which charged at temperatures above −25 °C occurred around their modulus peak under compression. At −25 °C, there was a strong possibility that a premature short circuit occurred locally in the cells during charging, thus they might show complex and variable mechanical response under compression. The failure moduli and crushing stresses of cells subject to compression tended to decrease as their ambient charging temperatures went down. Besides, 0.5 C-charged cells exhibited higher failure moduli and crushing stresses than the 1 C-charged cells above −20 °C. Morphology analyses of the cell electrode surfaces revealed that mossy lithium deposits became evident at temperatures below −10 °C. Furthermore, their distribution was uniform. Mechanical results also indicated that the short-term cycling at −20 °C and 0.5 C would soften the cell.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3