Quality Assessment of Acquired GEDI Waveforms: Case Study over France, Tunisia and French Guiana

Author:

Fayad Ibrahim,Baghdadi NicolasORCID,Riedi Jérôme

Abstract

The Global Ecosystem Dynamics Investigation (GEDI) full-waveform (FW) LiDAR instrument on board the International Space Station (ISS) has acquired in its first 18 months of operation more than 25 billion shots globally, presenting a unique opportunity for the analysis of LiDAR data across multiple domains (e.g., forestry, hydrology). Nonetheless, not all acquired GEDI shots provide exploitable waveforms due to instrumental (e.g., transmitted energy, viewing angle) and atmospheric conditions (e.g., clouds, aerosols). In this study, we analyzed the quality of all available GEDI acquisitions over France, Tunisia, and French Guiana, in order to determine the extent of the impact of instrumental and climatic factors on the viability of these acquisitions. Results showed that with favorable acquisition conditions (i.e., cloud-free acquisitions), the factor with the highest impact on the viability of GEDI data is the acquisition time, as acquisitions around noon were the least viable due to higher solar noise. In addition to acquisition time, the viewing angle, the transmitted energy, and the aerosol optical depth all affected, to a lesser extent, the viability of GEDI data. Nonetheless, the percentage of exploitable cloud-free GEDI acquisitions ranged from 75 to 91% of all total acquisitions, depending on the acquisition site. The analysis of the quality of GEDI shots acquired in the presence of clouds showed that clouds have a greater impact on their exploitability, with sometimes as much as 69% of acquired data being unusable. For cloudy acquisitions, the two factors that mostly affect the LiDAR signal are the cloud optical depth (or cloud opacity) and cloud water content. Overall, nonviable GEDI data represent less than 50% of total acquisitions across the different instrumental, climatic, and environmental conditions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3