Abstract
The study presents the analysis of the possible use of limited number of the Sentinel-2 and Sentinel-1 to check if crop declarations that the EU farmers submit to receive subsidies are true. The declarations used in the research were randomly divided into two independent sets (training and test). Based on the training set, supervised classification of both single images and their combinations was performed using random forest algorithm in SNAP (ESA) and our own Python scripts. A comparative accuracy analysis was performed on the basis of two forms of confusion matrix (full confusion matrix commonly used in remote sensing and binary confusion matrix used in machine learning) and various accuracy metrics (overall accuracy, accuracy, specificity, sensitivity, etc.). The highest overall accuracy (81%) was obtained in the simultaneous classification of multitemporal images (three Sentinel-2 and one Sentinel-1). An unexpectedly high accuracy (79%) was achieved in the classification of one Sentinel-2 image at the end of May 2018. Noteworthy is the fact that the accuracy of the random forest method trained on the entire training set is equal 80% while using the sampling method ca. 50%. Based on the analysis of various accuracy metrics, it can be concluded that the metrics used in machine learning, for example: specificity and accuracy, are always higher then the overall accuracy. These metrics should be used with caution, because unlike the overall accuracy, to calculate these metrics, not only true positives but also false positives are used as positive results, giving the impression of higher accuracy. Correct calculation of overall accuracy values is essential for comparative analyzes. Reporting the mean accuracy value for the classes as overall accuracy gives a false impression of high accuracy. In our case, the difference was 10–16% for the validation data, and 25–45% for the test data.
Funder
Akademia Górniczo-Hutnicza im. Stanislawa Staszica
Subject
General Earth and Planetary Sciences
Reference48 articles.
1. Derivation of the backscattering coefficient sigma nought in ESA ERS SAR PRI products. Technical Report ES-TN-RS-PM-HL09, ESA, September 1998https://earth.esa.int/documents/10174/13019/ers_sar_calibration_issue2_5f.pdf
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献