Woody Surface Area Measurements with Terrestrial Laser Scanning Relate to the Anatomical and Structural Complexity of Urban Trees

Author:

Arseniou GeorgiosORCID,MacFarlane David W.ORCID,Seidel DominikORCID

Abstract

Urban forests are part of the global forest network, providing important benefits to human societies. Advances in remote-sensing technology can create detailed 3D images of trees, giving novel insights into tree structure and function. We used terrestrial laser scanning and quantitative structural models to provide comprehensive characterizations of the woody surface area allometry of urban trees and relate them to urban tree anatomy, physiology, and structural complexity. Fifty-six trees of three species (Gleditsia triacanthos L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were sampled on the Michigan State University campus. Variations in surface area allocation to non-photosynthesizing components (main stem, branches) are related to the fractal dimension of tree architecture, in terms of structural complexity (box-dimension metric) and the distribution of “path” lengths from the tree base to every branch tip. The total woody surface area increased with the box-dimension metric, but it was most strongly correlated with the 25th percentile of path lengths. These urban trees mainly allocated the woody surface area to branches, which changed with branch order, branch-base diameter, and branch-base height. The branch-to-stem area ratio differed among species and increased with the box-dimension metric. Finally, the woody surface area increased with the crown surface area of the study trees across all species combined and within each species. The results of this study provide novel data and new insights into the surface area properties of urban tree species and the links with structural complexity and constraints on tree morphology.

Funder

United States Department of Agriculture Forest Service, Forest Inventory and Analysis Program, Northern Research Station

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference110 articles.

1. Energy Savings with Trees;Heisler;J. Arboric.,1986

2. Atmospheric carbon dioxide reduction by Sacramento’s urban forest;McPherson;J. Arboric.,1998

3. Carbon storage and sequestration by urban trees in the USA

4. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3