Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines

Author:

Singh Sarvesh Kumar,Banerjee Bikram PratapORCID,Raval Simit

Abstract

Spatially referenced and geometrically accurate laser scans are essential for mapping and monitoring applications in underground mines to ensure safe and smooth operation. However, obtaining an absolute 3D map in an underground mine environment is challenging using laser scanning due to the unavailability of global navigation satellite system (GNSS) signals. Consequently, applications that require georeferenced point cloud or coregistered multitemporal point clouds such as detecting changes, monitoring deformations, tracking mine logistics, measuring roadway convergence rate and evaluating construction performance become challenging. Current mapping practices largely include a manual selection of discernable reference points in laser scans for georeferencing and coregistration which is often time-consuming, arduous and error-prone. Moreover, challenges in obtaining a sensor positioning framework, the presence of structurally symmetric layouts and highly repetitive features (such as roof bolts) makes the multitemporal scans difficult to georeference and coregister. This study aims at overcoming these practical challenges through development of three-dimensional unique identifiers (3DUIDs) and a 3D registration (3DReG) workflow. Field testing of the developed approach in an underground coal mine has been found effective with an accuracy of 1.76 m in georeferencing and 0.16 m in coregistration for a scan length of 850 m. Additionally, automatic extraction of mine roadway profile has been demonstrated using 3DUID which is often a compliant and operational requirement for mitigating roadway related hazards that includes roadway convergence rate, roof/rock falls, floor heaves and vehicle clearance for collision avoidance. Potential applications of 3DUID include roadway profile extraction, guided automation, sensor calibration, reference targets for a routine survey and deformation monitoring.

Funder

Australian Coal Industry’s Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Case Study on Retroreflective Marker Usage in Industrial 3D Lidar Applications;Lecture Notes in Networks and Systems;2024

2. Optimization Design of Landscape Space Environment Based on Stereoscopic Imaging Technology;2023 2nd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI);2023-10-17

3. An MLS-based high-accuracy measurement and automatic analysis method for roadway deformation;Tunnelling and Underground Space Technology;2023-10

4. Mining Geomatics;ISPRS International Journal of Geo-Information;2023-07-14

5. Projected feature assisted coarse to fine point cloud registration method for large-size 3D measurement;Optics Express;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3