Abstract
This paper aims at developing a novel stability criterion to access the influence of the time-varying delay on the stability of power systems equipped with a proportional-integral (PI)-based load frequency control (LFC). The model of the LFC scheme considering time-varying communication delays is established at first. Then, an improved stability condition related to the information of delay bounds is deduced by constructing an augmented Lyapunov–Krasovski functional and using a matrix inequality, and it is expressed as linear matrix inequalities (LMIs) for easily checking. Finally, case studies for one-area and two-area LFC systems are carried out to show the relationship between delay margins ensuring the stability and the PI gains of the LFC, and also verify the superiority of proposed stability criterion compared with the previous ones.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献