Smart Contract Vulnerability Detection Model Based on Multi-Task Learning

Author:

Huang JingORCID,Zhou Kuo,Xiong Ao,Li Dongmeng

Abstract

The key issue in the field of smart contract security is efficient and rapid vulnerability detection in smart contracts. Most of the existing detection methods can only detect the presence of vulnerabilities in the contract and can hardly identify their type. Furthermore, they have poor scalability. To resolve these issues, in this study, we developed a smart contract vulnerability detection model based on multi-task learning. By setting auxiliary tasks to learn more directional vulnerability features, the detection capability of the model was improved to realize the detection and recognition of vulnerabilities. The model is based on a hard-sharing design, which consists of two parts. First, the bottom sharing layer is mainly used to learn the semantic information of the input contract. The text representation is first transformed into a new vector by word and positional embedding, and then the neural network, based on an attention mechanism, is used to learn and extract the feature vector of the contract. Second, the task-specific layer is mainly employed to realize the functions of each task. A classical convolutional neural network was used to construct a classification model for each task that learns and extracts features from the shared layer for training to achieve their respective task objectives. The experimental results show that the model can better identify the types of vulnerabilities after adding the auxiliary vulnerability detection task. This model realizes the detection of vulnerabilities and recognizes three types of vulnerabilities. The multi-task model was observed to perform better and is less expensive than a single-task model in terms of time, computation, and storage.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. Smart contracts: Building blocks for digital markets;Szabo;EXTROPY J. Transhumanist Thought,1996

2. Bitcoin: A peer-to-peer electronic cash system;Nakamoto;Decentralized Bus. Rev.,2008

3. Introducing Ethereum and Solidity;Dannen,2017

4. Hyperledger Projecthttps://www.hyperledger.org/

5. A survey of blockchain security issues and challenges;Lin;Int. J. Netw. Secur.,2017

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3