A Novel Approach for Multichannel Epileptic Seizure Classification Based on Internet of Things Framework Using Critical Spectral Verge Feature Derived from Flower Pollination Algorithm

Author:

Yedurkar Dhanalekshmi Prasad,Metkar Shilpa P.,Al-Turjman FadiORCID,Stephan ThompsonORCID,Kolhar Manjur,Altrjman Chadi

Abstract

A novel approach for multichannel epilepsy seizure classification which will help to automatically locate seizure activity present in the focal brain region was proposed. This paper suggested an Internet of Things (IoT) framework based on a smart phone by utilizing a novel feature termed multiresolution critical spectral verge (MCSV), based on frequency-derived information for epileptic seizure classification which was optimized using a flower pollination algorithm (FPA). A wireless sensor technology (WSN) was utilized to record the electroencephalography (EEG) signal of epileptic patients. Next, the EEG signal was pre-processed utilizing a multiresolution-based adaptive filtering (MRAF) method. Then, the maximal frequency point at which the power spectral density (PSD) of each EEG segment was greater than the average spectral power of the corresponding frequency band was computed. This point was further optimized to extract a point termed as critical spectral verge (CSV) to extract the exact high frequency oscillations representing the actual seizure activity present in the EEG signal. Next, a support vector machine (SVM) classifier was used for channel-wise classification of the seizure and non-seizure regions using CSV as a feature. This process of classification using the CSV feature extracted from the MRAF output is referred to as the MCSV approach. As a final step, cloud-based services were employed to analyze the EEG information from the subject’s smart phone. An exhaustive analysis was undertaken to assess the performance of the MCSV approach for two datasets. The presented approach showed an improved performance with a 93.83% average sensitivity, a 97.94% average specificity, a 97.38% average accuracy with the SVM classifier, and a 95.89% average detection rate as compared with other state-of-the-art studies such as deep learning. The methods presented in the literature were unable to precisely localize the origination of the seizure activity in the brain region and reported a low seizure detection rate. This work introduced an optimized CSV feature which was effectively used for multichannel seizure classification and localization of seizure origination. The proposed MCSV approach will help diagnose epileptic behavior from multichannel EEG signals which will be extremely useful for neuro-experts to analyze seizure details from different regions of the brain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3