Author:
Liu Ye,Yang Ting,Zhao Rong-Heng,Li Yi-Bo,Zhao Wen-Ju,Ma Xiao-Yi
Abstract
Reasonable planning of water delivery schedules for canal systems can reduce losses caused by water seepage and improve the utilization efficiency of irrigation water. Empirical methods of water delivery scheduling for canal systems usually cause problems such as insufficient discharge, excessively delayed water delivery, and large losses under given water requirements. In this study, a canal water delivery scheduling model was set up, and a customized algorithm based on particle swarm optimization was proposed. Typical heuristic algorithms often become trapped in local optima and often search inefficiently under numerous constraints; however, the proposed algorithm can overcome these typical problems. The proposed method was evaluated for two typical canal irrigation systems, and the results showed that the algorithm is robust and efficient and can quickly meet the water delivery optimization schedules for canal irrigation systems. Compared with empirical methods, the algorithm reduced the leakage loss of delivered water from 7.29% to 5.40%, and 8.97% to 7.46% for the two tested canal systems. The discharge of the main canal is relatively stable, which can reduce the difficulty of head gate adjustment. The proposed optimization algorithm can provide practical and efficient water delivery schedules for irrigation canal systems.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献