Development of a Design Tool for Performance Estimation and Validation Proton Exchange Membrane Fuel Cell: Verification and Validation for 20 KW Commercial Fuel Cell

Author:

Leto Angelo1,Di Lorenzo Giuseppe1ORCID

Affiliation:

1. CIRA—Italian Aerospace Research Center, 81043 Capua, Italy

Abstract

This work provides an extended description of the tools developed in the Wolfram Mathematica environment to characterize proton exchange membrane (PEM) fuel cells. These tools, with their user-friendly interface, facilitate the calculation of the main parameters required to obtain the PEM fuel cell polarization curve, offering a seamless and intuitive experience. Various mathematical models and algorithms are coded to accurately calculate the parameters needed for the polarization curve analysis. This study presents the development and validation of a computational tool designed to simulate the performance of proton exchange membrane (PEM) fuel cells. The tool integrates thermodynamic and electrochemical equations to predict key operational parameters, and was validated using experimental data from a commercial Ballard® PEM fuel cell to ensure its accuracy. The validation process involved comparing the numerical predictions with empirical measurements under various operating conditions. The results demonstrate that the computational tool accurately replicates the performance characteristics observed in the experimental data, confirming its reliability and instilling confidence in its use for simulating PEM fuel cell behavior. This tool offers a valuable resource for optimizing fuel cell design and operation, providing insights into the efficiency, output, and potential areas for improvement. Future work will expand the tool’s capabilities to include degradation mechanisms and long-term performance predictions. This advancement underscores the tool’s potential as a comprehensive solution for academic research and industrial applications in fuel cell technology.

Funder

CIRA in the framework of PRORA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3