Preventing Forklift Front-End Failures: Predicting the Weight Centers of Heavy Objects, Remaining Useful Life Prediction under Abnormal Conditions, and Failure Diagnosis Based on Alarm Rules

Author:

Lee Jeong-Geun12,Kim Yun-Sang2,Lee Jang Hyun3ORCID

Affiliation:

1. Department of Smart Digital Engineering, INHA University, Incheon 22212, Republic of Korea

2. Doosan Industrial Vehicle, Incheon 22503, Republic of Korea

3. Department of Naval Architecture and Ocean Engineering, INHA University, Incheon 22212, Republic of Korea

Abstract

This paper addresses the critical challenge of preventing front-end failures in forklifts by addressing the center of gravity, accurate prediction of the remaining useful life (RUL), and efficient fault diagnosis through alarm rules. The study’s significance lies in offering a comprehensive approach to enhancing forklift operational reliability. To achieve this goal, acceleration signals from the forklift’s front-end were collected and processed. Time-domain statistical features were extracted from one-second windows, subsequently refined through an exponentially weighted moving average to mitigate noise. Data augmentation techniques, including AWGN and LSTM autoencoders, were employed. Based on the augmented data, random forest and lightGBM models were used to develop classification models for the weight centers of heavy objects carried by a forklift. Additionally, contextual diagnosis was performed by applying exponentially weighted moving averages to the classification probabilities of the machine learning models. The results indicated that the random forest achieved an accuracy of 0.9563, while lightGBM achieved an accuracy of 0.9566. The acceleration data were collected through experiments to predict forklift failure and RUL, particularly due to repeated forklift use when the centers of heavy objects carried by the forklift were skewed to the right. Time-domain statistical features of the acceleration signals were extracted and used as variables by applying a 20 s window. Subsequently, logistic regression and random forest models were employed to classify the failure stages of the forklifts. The F1 scores (macro) obtained were 0.9790 and 0.9220 for logistic regression and random forest, respectively. Moreover, random forest probabilities for each stage were combined and averaged to generate a degradation curve and determine the failure threshold. The coefficient of the exponential function was calculated using the least squares method on the degradation curve, and an RUL prediction model was developed to predict the failure point. Furthermore, the SHAP algorithm was utilized to identify significant features for classifying the stages. Fault diagnosis using alarm rules was conducted by establishing a threshold derived from the significant features within the normal stage.

Funder

the Ministry of Oceans and Fisheries of KOREA Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3