Abstract
Uses of novel technologies for improving the durability and lifespan of the construction materials have emerged as viable solutions toward the sustainable future wherein the coating industry plays a significant role in economy growth and better livelihoods. Thus, the continual innovation of various technologies to introduce diverse market products has become indispensable. Properties of materials like color stability under UV, elevated temperatures and aggressive environments, and skid and abrasion resistance are the main challenges faced by commercial coating materials, leading to more demand of natural materials as sustainable agents. Lately, nanostructured core–shell pigments with unique compositions have widely been utilized in composite materials to enhance their properties. Core–shell particles exhibit smart properties and have immense benefits when combined with building materials. Based on these facts, we comprehensively overviewed the state-of-the-art research of core–shell nanomaterials in terms of their preparation and performance evaluation methods, as well as feasible applications. The first part of this article discusses effective shell materials, including most common silica and titanium oxides. In addition, nanotechnology enabling the production and patterning of low-dimensional materials for widespread applications is emphasized. The second part deals with various potential core materials used to achieve core–shell nanostructures. The third part of this paper highlights some interesting mechanisms of core–shell structures in the modified systems that display high stability, durability, efficiency, and eco-friendliness. Finally, different applications of these core–shell nanostructures are underscored together with their test methods to evaluate their performances.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献