Abstract
DNA lesions escaping from repair often block the DNA replicative polymerases required for DNA replication and are handled during the S/G2 phases by the DNA damage tolerance (DDT) mechanisms, which include the error-prone translesion synthesis (TLS) and the error-free template switching (TS) pathways. Where the mono-ubiquitylation of PCNA K164 is critical for TLS, the poly-ubiquitylation of the same residue is obligatory for TS. However, it is not known how cells divide the labor between TLS and TS. Due to the fact that the type of DNA lesion significantly influences the TLS and TS choice, we propose that, instead of altering the ratio between the mono- and poly-Ub forms of PCNA, the competition between TLS and TS would automatically determine the selection between the two pathways. Future studies, especially the single integrated lesion “i-Damage” system, would elucidate detailed mechanisms governing the choices of specific DDT pathways.
Subject
Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献