Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration

Author:

Scheunert MathiasORCID,Masser Robin,Khodja Abdellah,Paul Raphael,Schwalbe Karsten,Fischer Andreas,Hoffmann Karl Heinz

Abstract

The recuperation of otherwise lost waste heat provides a formidable way to decrease the primary energy consumption of many technical systems. A possible route to achieve that goal is through the use of Stirling engines, which have shown to be reliable and efficient devices. One can increase their performance by optimizing the piston motion. Here, it is investigated to which extent the cycle averaged power output can be increased by using a special class of adjustable sinusoidal motions (the AS class). In particular the influence of the regeneration effectiveness on the piston motion is examined. It turns out that with the optimized piston motion one can achieve performance gains for the power output of up to 50% depending on the loss mechanisms involved. A remarkable result is that the power output does not depend strongly on the limitations of the regenerator, in fact—depending on the loss terms—the influence of the regenerator practically vanishes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3