Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach

Author:

Xie JiachengORCID,Dong Ming,Yu Boning,Hu Yizhuo,Yang Kaige,Xia ChangjieORCID

Abstract

Frequency domain spectroscopy is considered to be a promising and novel method for the assessment of the insulation condition of power equipment. This work has practical significance as it explains the microscopic mechanism of this method in a wide temperature range and further establishes its quantitative model. To achieve this, in the present paper, we select oil-impregnated paper—one of the most common insulation materials for power equipment with a complex microstructure—as a test sample, deduce a formula based on the relationship between the real and imaginary parts of the complex permittivity to extract the spectra of independent dielectric processes and measure the frequency domain spectra of oil-impregnated paper under different temperatures, as well as its thermally stimulated depolarization current with a series of bias voltages. The analysis results reveal that oil-impregnated paper’s frequency domain spectra in a wide temperature range are mainly determined by dielectric processes whose generation mechanisms are low-frequency dispersion, DC conduction, electrode relaxation, interfacial relaxation and dipole relaxation, respectively. Moreover, due to the different thermal properties of charge motions, the macroscopic characteristics and microscopic generation mechanisms of both spectra vary significantly with the sample’s temperature. After verifying the generation mechanisms of the spectra in high, middle and low-temperature ranges, function models for those spectra with clear physical meanings are established separately, providing sufficient physical parameters to carry out insulation assessment.

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3