Gated Recurrent Unit Embedded with Dual Spatial Convolution for Long-Term Traffic Flow Prediction

Author:

Zhang Qingyong1,Zhou Lingfeng1,Su Yixin1,Xia Huiwen1ORCID,Xu Bingrong1

Affiliation:

1. School of Automation, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China

Abstract

Considering the spatial and temporal correlation of traffic flow data is essential to improve the accuracy of traffic flow prediction. This paper proposes a traffic flow prediction model named Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU). In particular, the GRU is embedded with the DSC unit to enable the model to synchronously capture the spatiotemporal dependence. When considering spatial correlation, current prediction models consider only nearest-neighbor spatial features and ignore or simply overlay global spatial features. The DSC unit models the adjacent spatial dependence by the traditional static graph and the global spatial dependence through a novel dependency graph, which is generated by calculating the correlation between nodes based on the correlation coefficient. More than that, the DSC unit quantifies the different contributions of the adjacent and global spatial correlation with a modified gated mechanism. Experimental results based on two real-world datasets show that the DSC-GRU model can effectively capture the spatiotemporal dependence of traffic data. The prediction precision is better than the baseline and state-of-the-art models.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Tier Survey of Deep Learning Based Traffic Prediction Schemes;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

2. Machine Learning-Based Lane-Changing Behavior Recognition and Information Credibility Discrimination;Symmetry;2024-01-01

3. MTESformer: Multi-Scale Temporal and Enhance Spatial Transformer for Traffic Flow Prediction;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3