Affiliation:
1. School of Automation, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
Abstract
Considering the spatial and temporal correlation of traffic flow data is essential to improve the accuracy of traffic flow prediction. This paper proposes a traffic flow prediction model named Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU). In particular, the GRU is embedded with the DSC unit to enable the model to synchronously capture the spatiotemporal dependence. When considering spatial correlation, current prediction models consider only nearest-neighbor spatial features and ignore or simply overlay global spatial features. The DSC unit models the adjacent spatial dependence by the traditional static graph and the global spatial dependence through a novel dependency graph, which is generated by calculating the correlation between nodes based on the correlation coefficient. More than that, the DSC unit quantifies the different contributions of the adjacent and global spatial correlation with a modified gated mechanism. Experimental results based on two real-world datasets show that the DSC-GRU model can effectively capture the spatiotemporal dependence of traffic data. The prediction precision is better than the baseline and state-of-the-art models.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献