An Ontology-Based Framework for Geospatial Integration and Querying of Raster Data Cube Using Virtual Knowledge Graphs

Author:

Hamdani Younes1ORCID,Xiao Guohui234ORCID,Ding Linfang5,Calvanese Diego146

Affiliation:

1. Department of Computing Science, Umeå University, 901 87 Umeå, Sweden

2. Department of Information Science and Media Studies, University of Bergen, 5007 Bergen, Norway

3. Department of Informatics, University of Oslo, 0373 Olso, Norway

4. Ontopic S.r.l., 39100 Bolzano, Italy

5. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway

6. KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, 39100 Bolzano, Italy

Abstract

The integration of the raster data cube alongside another form of geospatial data (e.g., vector data) raises considerable challenges when it comes to managing and representing it using knowledge graphs. Such integration can play an invaluable role in handling the heterogeneity of geospatial data and linking the raster data cube to semantic technology standards. Many recent approaches have been attempted to address this issue, but they often lack robust formal elaboration or solely concentrate on integrating raster data cubes without considering the inclusion of semantic spatial entities along with their spatial relationships. This may constitute a major shortcoming when it comes to performing advanced geospatial queries and semantically enriching geospatial models. In this paper, we propose a framework that can enable such semantic integration and advanced querying of raster data cubes based on the virtual knowledge graph (VKG) paradigm. This framework defines a semantic representation model for raster data cubes that extends the GeoSPARQL ontology. With such a model, we can combine the semantics of raster data cubes with features-based models that involve geometries as well as spatial and topological relationships. This could allow us to formulate spatiotemporal queries using SPARQL in a natural way by using ontological concepts at an appropriate level of abstraction. We propose an implementation of the proposed framework based on a VKG system architecture. In addition, we perform an experimental evaluation to compare our framework with other existing systems in terms of performance and scalability. Finally, we show the potential and the limitations of our implementation and we discuss several possible future works.

Funder

Kempe Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3