A Multi-Framework of Google Earth Engine and GEV for Spatial Analysis of Extremes in Non-Stationary Condition in Southeast Queensland, Australia

Author:

Pakdel Hadis1,Paudyal Dev Raj2ORCID,Chadalavada Sreeni1,Alam Md Jahangir13ORCID,Vazifedoust Majid4

Affiliation:

1. School of Engineering, The University of Southern Queensland, Springfield Lakes, QLD 4300, Australia

2. School of Surveying and Built Environment, The University of Southern Queensland, Springfield Lakes, QLD 4300, Australia

3. Murray-Darling Basin Authority (MDBA), Canberra, ACT 2601, Australia

4. Water Engineering Department, University of Guilan, Rasht 4188958643, Iran

Abstract

The frequency and severity of extremes, including extreme precipitation events, extreme evapotranspiration and extreme water storage deficit events, are changing. Thus, the necessity for developing a framework that estimates non-stationary conditions is urgent. The aim of this paper is to develop a framework using the geeSEBAL platform, Generalised Extreme Value (GEV) models and spatiotemporal analysis techniques that incorporate the physical system in terms of cause and effect. Firstly, the geeSEBAL platform has enabled the estimation of actual evapotranspiration (ETa) with an unprecedented level of spatial-temporal resolution. Following this, the Non-stationary Extreme Value Analysis (NEVA) approach employs the Bayesian method using a Differential Evolution Markov Chain technique to calculate the frequency and magnitude of extreme values across the parameter space. Station and global climate datasets have been used to analyse the spatial and temporal variation of rainfall, reference evapotranspiration (ETo), ETa and water storage (WS) variables in the Lockyer Valley located in Southeast Queensland (SEQ), Australia. Frequency analysis of rainfall, ETa, and water storage deficit for 14 stations were performed using a GEV distribution under stationary and non-stationary assumptions. Comparing the ETa, ETo and ERA5 rainfall with station data showed reasonable agreement as follows: Pearson correlation of 0.59–0.75 for ETa, RMSE of 45.23–58.56 mm for ETa, Pearson correlation of 0.96–0.97 for ETo, RMSE of 73.13–87.73 mm for ETo and Pearson correlation of 0.87–0.92 for rainfall and RMSE of 37.53–57.10 mm for rainfall. The lower and upper uncertainty bounds between stationary and non-stationary conditions for rainfall station data of Gatton varied from 550.98 mm (stationary) to 624.97 mm (non-stationary), and for ERA5 rainfall datasets, 441.30 mm (stationary) to 450.77 mm (non-stationary). The results demonstrate that global climate datasets underestimate the difference between stationary and non-stationary conditions by 9.47 mm compared to results of 73.99 mm derived from station data. Similarly, the results demonstrate less variation between stationary and non-stationary conditions in water storage, followed by a sharp variation in rainfall and moderate variation in evapotranspiration. The findings of this study indicate that neglecting the non-stationary condition in some hydrometeorological variables can lead to underestimating their amounts. This framework can be applied to any geographical area for estimating extreme conditions, providing valuable insights for infrastructure planning and design, risk assessment and disaster management.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference67 articles.

1. Non-stationary extreme value analysis in a changing climate;Cheng;Clim. Chang.,2014

2. Core Writing Team, Pachauri, R.K., and Reisinger, A. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Techniques for assessing water infrastructure for nonstationary extreme events: A review;Salas;Hydrol. Sci. J.,2018

4. Extreme value analysis and the study of climate change;Cooley;Clim. Chang.,2009

5. An Effective Trend Surface Fitting Framework for Spatial Analysis of Extreme Events;Love;Geophys. Res. Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3